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ABSTRACT 

Despite the major role of Global Positioning Systems (GPS) 

as a navigation tool for people with visual impairments (VI), 

a crucial missing aspect of point-to-point navigation with 

these systems is the last-few-meters wayfinding problem. Due 

to GPS inaccuracy and inadequate map data, systems often 

bring a user to the vicinity of a destination but not to the 

exact location, causing challenges such as difficulty locating 

building entrances or a specific storefront from a series of 

stores. In this paper, we study this problem space in two 

parts: (1) A formative study (N=22) to understand 

challenges, current resolution techniques, and user needs; and 

(2) A design probe study (N=13) using a novel, vision-based 

system called Landmark AI to understand how technology 

can better address aspects of this problem. Based on these 

investigations, we articulate a design space for systems 

addressing this challenge, along with implications for future 

systems to support precise navigation for people with VI. 
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CSS Concepts 

• Human-centered computing ~ Accessibility design and 

evaluation methods • Human-centered computing ~ 

Accessibility systems and tools. 

INTRODUCTION 
According to the World Health Organization [87], there are 

285 million people with visual impairments (VI), of which 39 

million are blind. For this group of people, navigation can be 

difficult due to challenges such as obstacles, crowds, noise, 

or complex layouts of physical spaces [3,16,62]. Among the 

many navigation tools that have been developed to cater to 

the needs of this community, GPS-based systems [65–68] are 

the most popular. This presents a challenge, in that 

smartphone-based GPS has a horizontal accuracy of about 

±5m at best [69], with potential for much worse accuracy in 

areas like urban canyons [43].  
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This means that smartphone GPS can guide a user to the 

vicinity of their destination, but not to the precise location 

(e.g., to the front of a building, but not to the actual door). 

This gap of a few meters is acceptable for people who can 

rely on their vision to identify their destination but creates 

confusion and uncertainty for people with VI. In addition to 

GPS inaccuracy, location-based systems rely on map data 

that is often inadequate to guide the user to their intended 

destination due to lack of granular information. Together, 

these imprecisions can limit blind users’ sense of 

independence. We call this challenge the last-few-meters 

wayfinding problem (also known as the “last 10-

meters/yards” problem [22,39]). 

In this paper, we investigate the problem of navigation for 

people with VI from the lens of the last few meters to a 

destination and use landmark recognition as the central 

strategy for navigation, building on the typical landmark-

based navigation strategy taught to people with VI by 

Orientation and Mobility (O&M) specialists [40]. We 

conducted a formative study to understand the characteristics 

of this problem including the challenges faced, current 

resolution techniques (and where they fall short), and how an 

ideal system might fill the gaps left by existing navigation 

aids. We then developed Landmark AI, a computer vision 

system intended as a design probe for understanding how 

technology could be employed to help users answer three 

common questions surfaced by participants in our formative 

study: (i) “What is around me?”, (ii) “What does this sign 

read?”, and (iii) “Is this the place I am looking for?”. Using 

this design probe, we conducted a user study to elicit 

feedback and opinions on the design of applications to 

address some of the last-few-meters challenges that blind 

pedestrians experience. 

As the first work to comprehensively investigate the last-few-

meters wayfinding challenge, our contributions include:  

 An investigation into the problem via a formative online 

survey with 22 participants;  

 A qualitative study of our Landmark AI design probe 

with 13 visually impaired users;  

 A description of the design space resulting from the two 

studies capturing the relationship between use of 

landmarks and other information types with a person’s 

mobility skills, residual vision, and situational context; 

 Design implications for future camera-based AI systems 

targeting the last-few-meters problem. 

https://doi.org/10.1145/3308561.3353776


BACKGROUND AND RELATED WORK 

Onset of VI impacts a person’s ability to perform day-to-day 

activities, and traveling independently is a core skill that 

must be developed [46]. As a key part of rehabilitation 

training, O&M specialists teach people with VI how to safely 

navigate indoors and outdoors. The basic O&M techniques 

for navigating independently include performing systematic 

search and trailing [46], as well as skills based on locating 

and using a series of physical landmarks between locations 

[40]. Some commonly used landmarks to ascertain location 

include contrasting floor textures and coverings (e.g., carpet 

to tiled surface or concrete sidewalk to grass pavements); 

using sounds (e.g., refrigerator humming, birds chirping, 

church bells, traffic) and smells (e.g., laundry room odors, 

kitchen smells, perfume store aromas) [70]. An O&M 

specialist teaches a route by breaking it down into small 

sections and helps the VI person identify useful landmarks 

along them. Using the identified set of landmarks as a 

checklist, the person moves from one section of the route to 

another by taking an action at each section endpoint marked 

by a landmark. For example, trailing a building line until it 

ends (landmark) and then taking a right turn (action). In this 

paper, we aim to address the last-few-meters challenge by 

complementing these existing mobility skills with technology 

that supports the discovery and use of landmarks.  

Navigation Systems for the Blind 

Navigation systems for the blind is a well-studied field for 

both indoor and outdoor navigation. Outdoor GPS-based 

systems [65–68], are the most widely deployed, providing 

features such as announcing nearby Points of Interests (POIs) 

and street intersections, and providing directional guidance 

via turn-by-turn directions [65,67] and spatialized audio 

[66,68]. Although they allow a user to navigate large 

distances, the localization accuracy is ±5m [69], preventing 

users from getting very close to their target POI.  

Information on locating landmarks such as doors, elevators, 

or stairs can play a crucial role in getting to a destination 

successfully. However, most systems lack such granular 

information. Some recent work on indoor navigation systems 

[4,17,20,21,49,71] have looked into providing information on 

such semantic features of the environment [45]. For example, 

NavCog3 [49] uses a BLE beacon network to provide sub-

meter localization accuracy indoors and information on 

nearby landmarks. Such systems demonstrate the usefulness 

of the landmark-based navigation approach; however, they 

require (i) additional deployment and maintenance effort to 

augment the physical environment (e.g., with RFID sensors 

[20], NFC tags [21], or Bluetooth beacons [49]), (ii) 

significant bootstrapping cost for setting up databases of 

floor maps [17] and landmarks [4,17,21,72], or (iii) require a 

user to carry an additional/specialized device [20]. These 

issues reduce the scalability and applicability of existing 

systems in diverse environments (e.g., outdoors). The 

BlindWays [73] smartphone app is a system that aims to 

address the last-few-meters challenge without augmentation; 

using crowdsourced clues to assist in finding transit stops. In 

this paper, we investigate the full breadth of the last-few-

meters wayfinding challenge and evaluate a camera-based 

(rather than crowdsourced) solution to find landmarks. This 

approach could work in tandem with outdoor or indoor 

navigation systems without requiring custom infrastructure. 

Camera-based Systems for the Blind 

Camera-based applications serve a wide array of purposes for 

VI users, including simple object recognition [64,74,75], text 

recognition [35,74,76], and search tasks [6,7]. Object 

recognition systems either use computer vision [74,75], 

human-assistance [77–79], or a hybrid of the two [80]. 

Human-in-the-loop systems’ latency (ranging from several 

seconds [80,81] to several minutes [78]) may be 

unacceptable for many navigation tasks; hence, our focus 

with Landmark AI is on automated approaches. 

Coughlan et al. [13] used a phone camera for wayfinding by 

utilizing computer vision to locate and read aloud specially 

designed signs. Subsequent systems have looked into 

combining phone and wearable cameras (e.g., [4,55,60]) with 

other sensors (e.g., smartphone and motion sensors 

[37,47,55]), or augmenting a smartphone camera [27,30]. 

Using computer vision and sensor fusion techniques, these 

systems localize, keep track of the user’s path, and provide 

precise corrective heading instructions. However, these 

systems require a time-consuming and laborious process of 

creating a database of likely locations, landmarks, or paths 

and augmenting the physical environment, making them 

unsuitable for exploring infrequent and unknown 

destinations, and unscalable for open-world exploration in 

natural environments. In contrast, our design probe uses only 

a smartphone camera without augmenting the environment 

and provides in situ feedback for both familiar and unfamiliar 

environments. 

FORMATIVE STUDY 

We conducted an online survey on how people with VI 

currently navigate to understand: (i) challenges they face in 

the last few meters, (ii) how they resolve them, and (iii) what 

information would aid them in resolving these challenges.  

Informed by O&M literature [40,46] and a discussion with an 

O&M specialist, we grouped commonly used landmarks into 

five categories—structural, sound, tactile, air, and smell. 

Some landmarks may be included in multiple categories 

(e.g., an elevator is both a structural and a sound landmark). 

Structural Landmarks are part of the physical structure of the 

built environment and are usually detected either via residual 

vision, vision of the guide dog, or haptic resistance through a 

cane (e.g., doors, stairways, elevators, and dropped curb 

edges). Sound Landmarks such as fountains, bell towers, and 

elevators generate noise. Tactile Landmarks have a distinct 

texture that is easily recognizable either through direct 

contact or through aids such as canes (e.g., carpeted surfaces, 

tactile domes on curb ramps). Air Landmarks produce some 

form of heat or cool air that is felt through the skin, such as 

HVAC units or fans. Smell Landmarks have a distinct aroma 

(e.g., perfumeries, tobacconists, bakeries).  



Method 

Participants. We recruited 22 blind participants (9 female): 

15 were between the age of 31-50, four were between 18-30, 

and three were above 50. Participants had varying levels of 

residual vision: 15 were totally blind and seven had some 

degree of light or color perception. 13 participants used canes 

as their primary mobility aid, six used guide dogs, 1 used a 

sighted guide, and one used other aids. Most described 

themselves as independent travelers (16) with varying self-

confidence levels (Mdn=4, SD=0.9), ranging from Not at all 

Confident (1) to Extremely Confident (5).  

Procedure. The survey was conducted over three weeks in 

August 2018. It took 30 minutes to complete and participants 

were compensated US$25. The survey used a recent critical 

incident approach [19] in which we asked participants to 

think of a specific recent episode in which they had 

experienced a last-few-meters navigation challenge. We used 

affinity diagramming [38] to analyze open-ended responses 

and identify themes. For the rest of the paper, survey 

participants are referred to by “S” suffixed by the participant 

number (e.g., S1) and the counts of the responses are 

included in parenthesis. 

Findings 

Challenges in the Last Few Meters 

Participants described challenging situations including tasks 

such as getting to an apartment, visiting the doctor’s office, 

and finding specific buildings within large areas like business 

complexes. For instance, S19 explained “I was dropped off at 

a college campus and I was unable to locate the building of 

my scheduled interview.” Amongst all participants, visiting 

the doctor’s office in a medical center was the most common 

scenario (6). In addition, the challenge of navigating open 

spaces where there is a lack of helpful environmental cues 

was a clear theme. Examples included indoor open spaces 

such as airports and malls (8), spaces with complex and 

varied paths like parks or universities (5), and open parking 

lots (5). These challenges are commonly encountered, with 

two-thirds of participants reporting at least some degree of 

familiarity with problematic destinations. 

In most cases, the hardest part of traversing the last few 

meters was finding the intended doorway (11). Participants 

reported this was caused by: (i) failure of existing guidance 

systems such as the inaccuracy of navigation technology, the 

limitations of guide dogs, or missing or inaccessible signage 

(9); (ii) finding the right door from a cluster of doors (5); (iii) 

transit drop-off points being far away from the actual 

destination (5). S8 gave an example situation where these 

reasons get intermixed: “The entrance to the building was off 

the parking lot rather than at the end of a sidewalk and the 

inside was a series of doors off a long hall.” 

Resolution Techniques 

Participants responded to these challenges by using sighted 

assistance (17), O&M skills (11), trial and error (7), 

technology (2), or completely giving up (2). Though 

participants described sighted assistance as the most common 

and effective technique, it was not always useful: “We 

resolved it by asking people, whoever could understand 

English, which was not too many at the airport at that time of 

the morning (S9).” Almost everyone (21) received O&M 

training for navigating physical spaces (known techniques 

included counting steps, finding landmarks, and using 

sensory clues such as aromas, sounds, or tactile surfaces). 

Trial and error was also quite common (7) as indicated by 

S3: “It’s a matter of feeling around until you find the actual 

handle of the store.” Participants often combined these 

techniques: “I usually ask for assistance from a passing 

pedestrian. If no one is around, I simply try all the doors 

until I locate the right one. It's easier if it's a restaurant or 

coffee shop or any store that has a distinct aroma that I can 

use to pinpoint the exact location. (S11)” 

Technological Limitations 

All participants mentioned using technological solutions 

during navigation to access information like turn-by-turn 

directions (9), nearby streets, intersections and POIs (9), and 

human assistance (e.g., Aira [79]) (1). Despite these benefits, 

participants reported many types of failures: “Mainly the 

accuracy with it not putting me exactly at my location instead 

putting me a few yards away. (S12)” The most important 

concern with current technology (16) was imprecision in 

terms of localization and granularity of information (e.g., 

floor number of the location): “Sometimes the GPS gets 

really thrown off and I end up walking in circles.” (S3). 

Other issues included lack of indoor navigation (3), 

intermittent GPS signal (2), use of headphones blocking 

ambient noise (2), and battery power drain (2). 

Useful Information in Resolving the Challenges 

Given the recent critical incident participants reported, we 

asked them to rate the categories of landmarks previously 

defined in terms of usefulness in that situation. Across all 

participants, tactile landmarks (Mdn=5, SD=1.1) were most 

preferred (11). For example, S2 “…used the grass on the 

[entrances] to the apartment buildings.” Structural 

landmarks (Mdn=5, SD=1.3) and sound (Mdn=4, SD=1.4) 

were next. Smell (Mdn=3, SD=1.5), and air (Mdn=3, 

SD=1.1) landmarks were least mentioned amongst all 

participants. S11 summarized the use of the landmark types 

based on the usage scenarios and their primary mobility aid, 

“Because I travel with a guide dog, I mostly rely on smell 

and sound cues when traveling, with tactile landmarks being 

useful if they are under my feet, and structural landmarks 

being helpful if I know they are there and can give my dog 

the command to find the landmark such as ‘find the stairs’.” 

When asked about missing information that would be useful 

in these situations, knowing about the layout of indoor and 

outdoor spaces was the most popular request (9). 



Participants also wanted to know more about existing signage 

(5): “If something could identify a sign, i.e., text/logos that 

identify a business then that would be very helpful.” (S6) 

Several participants indicated they would like to receive ego-

centric layout information about nearby things (4): “Imagine 

being able to walk down the hallway of an office building 

and hear ‘men's bathroom on your left.’ (S15).”  Other 

examples of desired information were precise auditory 

guidance on a smart mobile or wearable device (e.g., 

“approaching apartment building entrance”), granular map 

information (e.g., location of parking lots), and creating 

personal landmarks (e.g., an arbitrary location like a bench in 

a park). 

DESIGN PROBE STUDY 

Based on our formative study’s findings, we developed a 

vision-based app called Landmark AI as a design probe. We 

designed Landmark AI to demonstrate how landmark 

recognition could work, with the goal of helping participants 

imagine how they might use such technology combined with 

their existing mobility skills to overcome wayfinding 

problems. Because we were interested in broad questions of 

potential utility and context, Landmark AI was not rigorously 

optimized for accuracy. Rather, our probe identified 

categories of information for which AI developers might 

gather large, robust training sets such that more accurate 

recognition algorithms could be trained. While we do not 

wish to minimize the importance of accuracy and precision 

for such systems, these questions are out of scope for this 

paper. Based on this investigation, we developed a set of 

design considerations for future systems addressing 

navigation challenges in the last few meters. 

Landmark AI System 

Landmark AI (Figure 1) is a camera-based iOS app that 

allows users to gather information about the space around 

them once they get close to a destination. It is designed to 

provide information that supports their existing mobility 

skills to aid in decision-making during navigation. We 

modeled our app’s design on Microsoft Seeing AI [74], an 

iOS app that provides users with visual information via so-

called channels (e.g., reading short text, scanning bar codes, 

and reading currency notes). Basing our design probe on 

Seeing AI allowed us to minimize user training, to segregate 

different information types (via the channel metaphor), and 

to provide the user with an appropriate mental model of the 

feasible capabilities of current and near-term AI solutions 

(i.e., computer vision can succeed at specific, scoped tasks 

such as recognizing doorways, but open-ended description of 

unpredictable scenes is not currently accurate). In Landmark 

AI we provide three new channels—Landmarks, Signage, 

and Places—to provide visual information that is relevant in 

navigating the last few meters. The app is operated by either 

panning the phone’s back-facing camera or taking a picture 

(depending on the channel) to get auditory callouts. 

Landmark Channel: “What is around me?” 

Given landmarks that were indicated as useful in our 

formative study and prior literature on critical landmarks for 

navigation [45], we designed the Landmark channel to 

 

Figure 1. Landmark AI is a vision-based app that is modeled on Seeing AI iOS app. The app is fully operable non-visually via the 

VoiceOver screen reader, but we show the visual UI here for clarity. (a) The Soundscape iOS navigation app helps the user get near 

the location. In this case, it’s outside See’s Candies. The top-right button is included to switch to Landmark AI once near the 

destination. (b) The Landmark AI app has three channels: Landmarks, Signage, and Place (a pair of Capture Place and Find Place 

functions). (c) Using the Landmark and Signage channels, the user can locate the entrance of See’s Candies once close to the store. 

 



recognize structural landmarks (e.g., doors, stairs, windows, 

elevators, and pillars)  and obstacles (e.g., tables, chairs, and 

benches) around the user as they scan the environment. 

Instead of choosing computationally heavy methods 

[10,51,54], we used a light-weight pre-trained object 

recognizer with reasonable accuracy (F1 = 69.9 at a 99% 

confidence threshold for recognition) to run on commodity 

smartphones. The recognizer is based on the SqueezeNet [23] 

deep neural network model, and trained on 2,538 randomly 

selected images from the ImageNet database [15]. As the 

user pans the phone’s camera, the channel announces 

landmarks when first recognized and every two seconds the 

landmark remains in the camera’s view. While a real-world 

system would likely need to detect a much larger set of 

landmarks and at a much higher accuracy, constraining the 

detected landmarks to features common in our study location 

was sufficient for the purposes of a design probe 

demonstrating the landmark recognition concept. 

Signage Channel: “What does this sign read?” 

In our formative study, participants indicated that knowing 

more about nearby signage would be helpful in navigating 

the last few meters to a destination (e.g., finding store names 

or signs with directions), so we designed a channel to read 

signage in static images the user captures with Landmark AI. 

An ideal implementation of this channel would perform 

recognition on-device in real-time [52,82], but implementing 

such an algorithm was out of scope for our design probe, so 

we used Microsoft’s cloud-based Cognitive Services [83] to 

implement the recognition. These services require several 

seconds to process a frame, preventing a fully real time 

interaction for this channel. Despite this limitation, the 

signage channel gave us the opportunity to test different 

feedback mechanisms and study the utility of signage versus 

other cues when traversing the last few meters. 

Place Channel: “Is this the place I am looking for?” 

We designed the place channel to allow users to define and 

recognize custom landmarks. To use the channel, a user first 

saved a picture of a specific place they wanted to find in the 

future either by taking a picture themselves using Capture 

Place function or saving a picture sent from a friend (e.g., a 

meeting place like the box office window at a theater or a 

specific table outside a storefront, Figure 2). The user could 

then use the Find Place function to search for the location in 

the captured image. Due to the complexity of this scene 

matching task, we simulated this functionality in our design 

probe via a Wizard of Oz [36] approach, whereby a 

researcher would trigger customized feedback (“<X> place 

found”) when users of the design probe scanned the phone 

running Landmark AI over a visual scene that matched the 

stored scene. 

Study Method 

We conducted a three-part study using a scenario-based 

design [48] involving three tasks, each highlighting a last-

few-meters challenge. Before using the Landmark AI design 

probe, users completed a set of short tutorials demonstrating 

the use of each channel. Each task involved getting close (~2 

- 5ft) to a particular business using a popular GPS-based iOS 

navigation application called Microsoft Soundscape [66] and 

then using Landmark AI to cover the last few meters. For 

every task, the participants were asked to think aloud as they 

made navigation decisions. We solicited feedback on their 

experience including perceived utility, limitations, and design 

recommendations for future systems. Tasks took place within 

a large, outdoor two-story shopping center in the U.S. Study 

sessions lasted about 90 minutes, and participants also 

completed a demographic questionnaire. Participants were 

compensated US$75. 

Task 1. Find the elevator near the restrooms and ice-cream 

store. First, participants were asked to locate the store using 

the GPS app and then find the elevator using their own 

mobility skills. Then participants were asked to walk back to 

the location where the GPS app stopped being useful and 

switch to Landmark AI to locate the elevator again. The 

goals of this task were to contextualize the use of Landmark 

AI after experiencing challenges in the last few meters when 

navigating on their own, and to study the use of Landmark AI 

in a familiar place (familiarization after completion of the 

first sub-task). 

Task 2. Find a table near the entrance of the candy shop. In 

this task, participants were guided to the second floor of the 

shopping center and asked to use the GPS app to locate a 

candy shop. Participants were informed that they could 

switch to Landmark AI at any time. We observed how they 

used the two apps together, when they switched between the 

two, and when and why they chose to use particular channels 

in Landmark AI. The goal of this task was to test the 

usefulness of Landmark AI in visiting an unfamiliar place. 

Task 3. Find the box office counter for the theater. For this 

task, participants were asked to imagine a scenario where 

they are meeting with a friend (in this case, the researcher) at 

the box office counter of the theatre, which the friend had 

sent a photo of. Their task was to locate the counter using the 

Place channel in Landmark AI after using the GPS app to get 

near the theater. The goal of this task was to understand how 

participants would use the more open-ended scene 

recognition of the Place channel. 

 

Figure 2. Examples of places for the Place Channel. (a) 

“box office counter of a theater” (b) “benches outside the 

ice-cream store” (c) “gummy bear outside the storefront of 

Margo’s Sweet Shop” 



Participants 

We recruited 13 people with VI (4 female) aged 24 - 55 

(Mean=39, SD=11). Six participants used guide dogs, six 

used white canes, and one had low-vision (P3) and used 

magnifiers to read text. During the study, two guide dog 

users switched to using their canes, as they felt canes were 

better suited for the tasks. Participants had varying levels of 

functional residual vision: color perception (3), visual acuity 

(2), contrast sensitivity (3), peripheral vision (4), central 

vision (6), no vision (5), and others (2). On a 5-point Likert 

scale ranging from Not at all Confident (1) to Extremely 

Confident (5), participants had varying self-confidence levels 

for navigating on their own (Mdn=4, SD=0.86), and on a 4-

point Likert scale ranging from Not at all Familiar (1) to 

Very Familiar (4), most participants were users of both 

Soundscape (Mdn=3, SD=0.86) and Seeing AI (Mdn=3, 

SD=0.75). Only 5 participants had some familiarity with the 

study location (Mdn=1, SD=0.85), and amongst them, none 

were familiar with the specific task locations. 

Data and Analysis 

We audio recorded, transcribed, and coded the sessions to 

find general themes using deductive coding [9]. We 

transcribed 12 audio files; one participant’s (P7) transcript 

was unavailable due to audio recording device failure. One 

researcher prepared an initial codebook based on the 

formative study findings and our research questions, which 

was later refined by a second researcher. Both researchers 

coded a randomly selected transcript. We used Cohen’s 

Kappa [57] for establishing inter-rater reliability (IRR) which 

was 0.42 for the first iteration of the codebook, suggesting a 

need for more iterations [57]. We conducted three such 

iterations, resolving disagreements and removing or 

collapsing conflicting codes, before establishing IRR 

(=0.69, SD=0.23) with the final codebook. The remaining 

transcripts were divided and coded independently. 

FINDINGS 

Existing Wayfinding Strategies 

Participants first described their wayfinding strategies included 

employing their O&M training, mobility aid, and residual 

vision (if any) to either discover what is around them or search 

for a specific target when they get close to their destination, 

depending on their familiarity with the space. Guide dogs are 

particularly useful in search tasks (i.e., looking for a known 

object that the dog can recognize in the last few meters), 

whereas canes are more suitable for discovery tasks via O&M 

techniques like building trailing and structured discovery. P10 

described using their residual vision to search for geometric 

and photometric properties of a landmark (e.g., “I can see the 

gleam off the metal” or “It looks like a big blob of colors so I 

think I'm in the area”) and falling back to technology when 

their residual vision is not sufficient: “I usually have a 

monocular. […] I visually try to look around. If I get really 

confused, I'll go into Google Maps and zoom.” (P10). 

Information Utility 

All participants valued the information provided by 

Landmark AI, as the app gave access to information they 

might not have otherwise. They listed several reasons: ability 

to know what’s around them, faster mobility by speeding up 

their search and discovery tasks, and increased independence. 

Participants identified several situations where they would 

use a system like Landmark AI: common places such as 

transit stops (most commonly mentioned), airports, 

pedestrian crossings, universities, and malls; unfamiliar 

places with confusing layouts such as conference centers or 

theaters; finding specific objects such as trash cans; and 

avoiding obstacles. 

Channel-Specific Utility 

The Landmark channel was viewed as the most useful due to 

instant access to contextual information and most likely use 

in day-to-day life: “I like the real time feedback. Even if it's 

not perfect, it's so cool because it gives you kind of a quick 

sense of what's around you. That's something that, as a blind 

person, you usually have to be pretty slow, careful, and 

rigorous about exploring your environment. This gives you a 

chance to be a little freer, or a little more spontaneous.” (P6) 

Participants saw the potential to use it in different contexts by 

expanding the list of landmarks recognized by the system 

such as including restrooms and transit stops or recognizing 

rideshare cars’ make and model. P10 described using a 

gummy bear statue outside the candy shop to confirm the 

store location; the use of residual vision with landmark 

detection in this case suggests that landmark detection should 

be designed to work in combination with users’ residual 

vision (e.g., identifying color and shape of an identified 

landmark) to support future visits even without the system. 

The Signage channel was used to get confirmation when 

participants reached their destination. It was especially liked 

by those who had enough residual vision to detect, but not 

read, signs: “I like the fact that they can pick up signage that 

might be too far away to see.” (P10). The channel also 

provided a way to be independent, especially where Braille is 

unavailable. In spite of the benefits, many (5) participants 

found it hard to use because of difficulty in knowing when to 

look for signs (“I didn't visually see a sign, so I didn't have a 

trigger to switch to sign [channel]”—P3) and where to point 

the camera (i.e., both framing the view and conceptually 

knowing where signs could be). To remedy this, four 

participants suggested detecting existence of signs in the 

Landmark channel and providing more guidance to capture 

the signs as they scan the environment. 

The Place channel was the most liked channel (9) because of 

the ability to capture and share an uncommon location (e.g., 

“Meet at the bench outside Baskin Robbins in the mall”), 

simplicity of usage, the wide potential of usage scenarios, 

and increased feeling of independence. People with residual 

vision found utility where their vision was inadequate: 

“Because I don't have any peripheral vision, I wouldn't have 

noticed it [box office counter], but now that I've been there, if 

you said, ‘Okay, go find a box office at that place.’ I'd go 



right straight to it. It's a good learning tool.” (P10). 

Participants liked the channel’s social focus: “Being able to 

be precise and to share landmarks and to connect with 

people in that way, there's fun there, right?” (P3).  

Importance of Landmarks 

Amongst the landmarks currently identified by Landmark AI, 

the popularity of detecting doors was unanimous. 

Additionally, the differentiation between a door and a 

window was appreciated since (i) people with residual vision 

often have a hard time differentiating between the two due to 

the similarity of materials used (glass) in large shopping 

complexes and commercial buildings, (ii) guide dogs, who 

are usually good at finding doors, often get confused and lead 

the VI individual to a full-pane window, and (iii) cane users 

have trouble finding the door since they have to manually 

feel the door handle (“You don't have to do that weird 

fumbling thing.”—P8). 

System Design Considerations 

Seamless User Experience 

Six participants liked the instantaneous feedback from the 

Landmark and Place channels since it gave a “quick sense of 

what's around you.” Several participants (4) felt the need for 

less information as it incurred cognitive load while walking. 

“I really don't wanna hear everything that's coming in my 

way. That's too much information to process.” (P9). They 

expressed the need to filter irrelevant information based on 

the task at hand (e.g., finding the building entrance), or the 

situational context (e.g., entering a restaurant vs. looking for 

a table) by either manually or algorithmically “determining 

the importance of putting the landmark with respect to where 

you wanna go and what you're trying to do”—P9.  

In the design of Landmark AI, users had to switch between 

channels to access different types of information. Multiple 

participants (4) indicated the need for a simpler design 

favoring a merged channel to enable efficient interactions 

and transitions between the different types of information. 

Participants suggested the system should intelligently 

ascertain the information need based on the situational 

context such that the cognitive load of “where to point and 

having to pick the category” (P3) is reduced. For example, if 

looking at a sign, read the sign automatically instead of 

switching to the channel to trigger the feedback. 

Physical form factor was an important consideration that was 

noted by several participants (4). Hands-free use was desired 

so as to not disrupt their navigation routine and pace. Having 

to hold the phone out is not ideal due to safety concerns and 

the difficulty of managing it along with their primary 

mobility aid [61]. Participants suggested using wearables 

such as head-mounted devices (e.g., Google Glass) or 

wearing on-body cameras “Because you have to hold the 

phone for the camera to work, I would be very limited if I 

wasn't using my guide dog, because she works on my left 

side. I can only hold the phone with my right hand. If I was 

using my cane, I would not be able to use this app.” (P12). In 

addition to the awkwardness of using the phone, holding the 

phone straight was another issue. If not held straight, some 

participants had difficulty in understanding what was around 

them and where items were with respect to them; holding a 

tilted phone was the likely reason for their confusion.  

Accuracy 

Accuracy was one of the most important concerns amongst 

all participants (13) as it forms the foundation for 

establishing trust and confidence in the system. Factors that 

influenced accuracy were either system-oriented or user-

oriented. System oriented factors included presence of false 

positives in the object recognizer and lack of robustness in 

handling a variety of materials. For example, false positives 

from objects located across the glass window and false 

negatives caused due to environmental conditions (e.g., 

lighting and color contrasts causing inability to read signs). 

User-oriented factors included difficulty in framing a well-

focused image, handling users’ walking pace, and perceived 

inaccuracy caused by not holding the phone straight and in 

line with their body’s position. Despite the current object 

recognizer’s inaccuracy, participants explained even with 

inaccurate information, they would rely on their mobility 

skills to support them when technology fails. An instance 

was confirming the information provided by the application 

(e.g., checking a table’s existence with their cane). 

Closely tied to the accuracy of the object recognizer is 

accurately capturing the scene and receiving usable feedback. 

For example, participants were concerned about being too far 

away or too close while taking a picture. Similarly, some 

participants were concerned whether the system could handle 

the variability in the perspectives of a captured location in the 

Place channel. Participants liked that the system was able to 

recognize landmarks from a distance as that didn’t require 

them “to be up close and personal with [the] building” (P8). 

However, they were frustrated when the system failed to 

recognize landmarks from a distance, which happened for a 

few participants due to variability of phone usage. Getting 

feedback at the right distance is important when the feedback 

is crucial to be received ahead of time (e.g., detecting 

obstacles). Participants wanted to hear the feedback as “further 

out it can tell” —P10 or periodically when moving towards 

their target (e.g., in decrements of “50 feet, 25 feet, 10 feet” —

P10).  

Future Design Enhancements 

Participants wanted access to more information with both 

more granularity and variety. For example, recognizing 

objects such as trash/recycling bins and drinking fountains, or 

landmarks such as pedestrian signals and restrooms. They 

wanted to identify objects that cannot be detected with their 

primary mobility aid such as railings when using a cane, 

empty tables when using a guide dog, and if there are people 

in the way when capturing a picture. In addition to the 

feedback about the environment, participants wanted precise 

directional guidance to reach their intended target as well as 

in situ guidance to use the system better. Precise directional 

guidance included providing information on the VI person’s 



spatial orientation, ego-centric directions, and distance from 

the object of interest. In situ guidance included: (i) how to 

hold the phone and manipulate the camera: “I don't know if a 

sighted person would look down to find the table. So, does 

that mean I have to angle the phone down?” (P5—

congenitally blind participant); and (ii) identify and prompt 

the user when to use the system: “I keep forgetting that 

sometimes there are signs that hang out perpendicular to the 

building; […] signs are things that we avoid as blind people 

because they hurt.” (P6). They also suggested using earcons 

to help them capture a picture better (e.g., a beeping sound to 

guide the user in capturing the full sign). Additionally, 

participants mentioned varying directional instructions 

depending on an individual’s residual vision, e.g., using more 

visual instructions vs. more directional feedback. As P10 

explains, “I would give her [a friend with residual vision] 

more visual instructions because I know she can see that to a 

point.” For a completely blind person, much more granular 

information is needed such as precise ego-centric directions 

to the object of interest (e.g., “men’s bathroom 10 feet to 

your left” or “door 20 feet ahead”). 

Finally, participants envisioned how such a vision-based 

system could be integrated or could work in tandem with 

other existing applications. Some examples included using it 

with native phone apps (e.g., Photos), GPS-based apps such 

as Soundscape (e.g., being able to set a beacon on the 

landmark of interest), using images from messaging 

applications or Google Street View as “places” to find, and 

mapping applications such as Google Maps: “Collaboration 

is really an important thing when it comes to AI. If you could 

have the landmark feature integrated into […] Google Maps 

for indoor navigation, that would be really nice in big 

hotels.” (P11). 

DESIGN SPACE FOR LANDMARK-BASED SYSTEMS 

As articulated by Williams et al. [58], individual differences 

play an important role in a VI person’s use of navigation 

technology. Based on our studies’ findings, literature on 

O&M training, and prior studies of VI peoples’ navigation 

behaviors [2,8,46,58], we articulate a design space for 

creating adaptive systems using landmarks as the primary 

wayfinding strategy. Systems designed according to these 

principles would provide personalized information relevant 

to the user and the situational context. The need for tailored 

information based on the user's specific abilities is a key 

aspect in O&M training and the proposed principles strongly 

comply with the Ability-based Design paradigm [59]. 

As described earlier, landmarks have varied sensory 

properties such as having distinct colors, shapes, sizes, 

aromas, sounds, or textures. Landmark preferences depend 

on the landmark’s availability, the mobility aid individuals 

use, residual vision, and the presence of other senses (e.g., 

hearing). Based on these factors, the relevance of a particular 

landmark in a given situation may differ. We define a design 

space to capture this relationship by mapping a person’s 

mobility need to the different affordances of a landmark and 

its environmental context. We break the design space into 

four components: (i) Visual Abilities, (ii) Mobility Aid, (iii) 

User Personality and Preferences, and (iv) Context.  

Visual Abilities 

Adapting a system to VI user’s visual abilities requires 

accommodating a person’s use of their residual vision (if 

any) to navigate and how their navigation strategy impacts 

the choice of landmarks. During O&M training, an instructor 

assesses a user’s residual vision to determine which 

landmarks would be usable. Relevant visual indicators 

include user’s color perception, contrast sensitivity, visual 

acuity, and presence/absence of peripheral and central vision. 

As we saw from our study, landmarks are chosen based on 

their color, shape, size, and the location with respect to the 

user. For completely blind users, providing granular 

directional guidance is key. For people with residual vision, 

using visual instructions (e.g., by describing visual features 

of the environment) is more appropriate. For example, for a 

person with color perception, an adaptive system should 

identify landmarks with distinct colors (e.g., a bright red 

mailbox). Wayfinding apps could also be personalized in 

ways that best augments users’ existing capabilities, i.e., 

focusing only on calling out landmarks in the periphery if 

someone’s central vision is intact. Alternatively, as suggested 

by one of our participants, a user may wish to specify in their 

profile that they would like an app to focus only on 

identifying landmarks in the region they can detect with their 

residual vision, so that they can then learn to attend to these 

landmarks in the future without the aid of the app. 

Mobility Aid 

An adaptive system should consider the differences in the 

information received from a person’s mobility aid. Mobility 

aids such as guide dogs and white canes have different 

affordances. For example, a guide dog is mainly used to 

avoid obstacles and is most suitable for search tasks, while a 

cane is effective for detecting obstacles and is most suitable 

for discovery tasks. These differences impact an individual’s 

navigation strategy [58], as we saw VI individuals’ ability to 

use our system differed depending on their primary mobility 

aid. For example, finding doorways is easier for guide dog 

users while it is a laborious and a manual process for cane 

users. On the other hand, guide dog users do not receive any 

tactile information of objects and surfaces around them. This 

suggests adaptive systems should make discovery of 

landmarks dynamic depending on a user’s mobility aid 

[2,25]. For example, technology to assist in detecting tactile 

landmarks would be beneficial for guide dog users while 

systems that find structural landmarks such as doors and 

elevators would benefit cane users. 

User Personality and Preferences 

An individual’s confidence traveling independently is a 

major personality trait that influences how they wish to use 

guidance systems [2]. Confidence may depend on years of 

mobility training received and/or the number of years of sight 

loss. Such differences could inform the level of support and 

guidance needed from a wayfinding system. For example, a 

person with recent sight loss might need constant feedback 



while a person who has never had vision may be more 

confident and may only need specific informational cues 

depending on what they want to achieve. In our study, we 

found that some participants were very task-oriented and 

only cared about the information relevant to the current 

context. In contrast, some participants wanted a full report on 

every landmark or object in the environment to get 

acclimatized and build a more complete mental model. 

Systems could support both pull and push interactions, 

allowing users to explicitly set their personal preferences. 

Context 

Complementing prior work [1,2,34], the fourth aspect of 

adaptation relates to the contextual factors that determine 

landmark choices when on-the-go. Depending on a VI 

individual’s situational context (i.e., familiarity with the 

space, noise level, crowd density, weather, and time of day), 

the usefulness of a landmark will vary. For example, a user’s 

familiarity with the location changes the navigation task from 

discovery (for unfamiliar spaces) to search (for familiar 

spaces). Certain landmark types may not be useful based on 

the environment (e.g., sound landmarks when the 

environmental noise is high) or may not be available (e.g., 

“ding” sounds if the elevator is out of service). When a 

location is crowded, navigation becomes slower and use of 

mobility aids becomes difficult (e.g., guide dogs losing line 

of sight to targets such as doors); in such scenarios, detection 

of obstacles would be important to provide for a clear path to 

the user and their mobility aid. Finally, lighting conditions, 

depending on the time of day and weather, may affect 

computer vision technologies and users’ residual vision. 

DISCUSSION 

Using two exploratory studies, we investigated the 

characteristics of the last-few-meters wayfinding challenge 

and explored specific user needs in this space. From these 

studies, we articulated a design space for creating adaptive 

systems providing tailored feedback to VI pedestrians. This 

design space is not only limited to the last-few-meters 

problem but can also be applied to traditional point-to-point 

navigation applications where the primary means of 

navigation is walking. 

In the last few meters, we found that the spatial relationship 

between the person and the surrounding landmarks and/or 

obstacles needs to be established (e.g., elevator is 10 feet 

away from the user at their 2 o’clock). Amongst landmark 

categories, we found discovering structural landmarks was 

the most preferred across all participants. Usefulness of 

landmark categories depended on the user’s situational 

context and personal preferences based on their vision level 

and mobility aid, and we captured this relationship in our 

proposed design space. Our findings demonstrate how 

Landmark AI can be useful in complementing a VI 

individual’s mobility skills, i.e., how the system would be 

used with their primary mobility aid and residual vision. We 

reflect on these findings and present implications for 

designing and developing camera-based AI tools for 

accessibility, and present limitations and future work. 

Implications for Camera Systems for VI Pedestrians 

In this paper, we demonstrated the feasibility of using a 

smartphone camera-based system that provides near-real 

time information about the world within the accessibility 

context when the user is mobile. Within the three interaction 

paradigms we observed, i.e., real-time scanning (Landmark 

channel), image capture (Signage channel), and hybrid—

combining capturing images and real-time scanning (Place 

channel), participants preferred real-time scanning as it was 

fast, simple, and easy to use on-the-go. Capturing a good 

image was a frustrating experience [32,33]. Partial coverage 

or misfocus in capturing images of signs were common 

reasons for difficulty in using the channels. Applying blind 

photography principles [33] could help guide users to capture 

accurate pictures, though this remains a challenging area for 

further research. Additionally, participants preferred a 

simpler interaction than switching channels. Even though 

channels are an artifact of Seeing AI, this system design 

allowed us to analyze the implications and impact of these 

interaction paradigms: while channels simplify a system’s 

technical implementation, they add overhead for the end user, 

and we recommend avoiding them. 

Consistent with prior work [17,42], some participants had 

difficulty positioning the phone while walking. This caused 

misinterpretation of the app’s feedback. Implementing 

camera guidance mechanisms [32,56] to handle hand-body 

coordination could resolve such difficulties. Alternatively, 

participants suggested using a wearable camera to allow 

hands free usage when they are mobile—critical for many 

participants due to either situational or motor impairments. 

Prior work [18] and industry solutions (e.g., [84–86]) have 

looked into wearables for VI users. However, further work is 

required on wearable solutions to study scene capture 

accuracy and its impact on users’ understanding and 

knowledge of the environment; Manduchi et al.’s 

investigation of blind users’ ability to use smartphone object 

recognizers [42] is an important step in this direction. 

Implications for Vision Algorithms for Accessibility 

On-device Recognition: In this paper, we looked at the 

application of deep neural networks (DNNs) for recognition 

tasks on mobile devices [28,31,63]. Use of fast and light-

weight recognizers are crucial for providing real-time 

feedback when the user is mobile. We used a fast on-device 

recognizer based on SqueezeNet [31] to identify landmarks, 

making instantaneous response a possibility. However, a 

contributing factor to the signage channel being least 

preferred was the slow processing time due to dependence on 

cloud-based API calls. Current on-device recognizers lack 

the robustness in handling the variety of font styles 

encountered in the open world, particularly stylized logos 

common in commercial spaces. Future work from the vision 

community to develop on-device text recognition algorithms 

will be crucial in making signage recognition real-time. In 

addition to enabling real-time information, on-device 

recognition would also preserve privacy, especially for 

people captured in the scene. 



Need for Material Recognition: Our design space highlights 

the importance of identifying a landmark’s photometric and 

geometric properties to support varied vision levels in order 

to customize landmark detection. For this to happen, 

materials and texture recognition [5,12,29,50] would play a 

critical role, for example, detecting the material of the 

landmark and detecting changes in surface texture (for tactile 

landmarks). However, current computer vision algorithms 

[5,12,29] are not accurate enough, warranting an effort in 

improving their speed and accuracy. Combining material 

recognition with object recognition could also improve 

landmark recognition accuracy. In addition to materials, 

determining the color, shape, and size of landmarks is 

important when integrating them with object recognition. 

Implementing Place Recognition: Landmark AI’s place 

channel, which used a Wizard of Oz approach, was popular 

among study participants. Participants expressed interest in 

knowing whether the system would support recognizing the 

place if the original angle of capture differed from angle of 

the real-time feed. Prior work in robotics has looked into 

using deep learning approaches [11,41,53] and traditional 

computer vision techniques [14] for performing place 

recognition [24]. Future work in implementing a real-time 

place recognizer that is both viewpoint invariant and time 

invariant will be crucial in making this demonstrated 

experience a reality. Within the accessibility context, the 

place recognition problem can be constrained at two stages: 

(i) at the image capture stage, where unique landmarks are 

captured in the scene along with the location, and (ii) at the 

recognition stage, where performing a fuzzy match between 

the previously stored image and the current scene could be 

sufficient, thus circumventing the need for semantic scene 

understanding. This approach would be particularly useful 

for scenes for which specific classifiers have not been trained 

or that contain unusual uncommon objects. 

Achievable Accuracy: We found that participants preferred 

certain types of landmarks such as doors over others. This 

suggests that we may not need general-purpose recognizers 

that classify a wide range of possible objects, a daunting task 

for current computer vision algorithms. Instead, collecting a 

large and realistic dataset of common landmarks and objects 

(e.g., doors of different types), combined with 

counterexamples of objects that are similar and confusable 

with the object of interest (e.g., full-pane windows) would be 

a priority. Building a robust recognition model for a smaller 

(but important) set of objects could have a significant impact 

on VI users’ daily navigation abilities. Our design decision of 

using simpler vision models with preset landmarks was 

guided by this fact to maintain a reasonable level of accuracy. 

In our system, we cared more about precision (low false 

positives) than recall (low false negatives). Ideally, there 

should be a balance between the two. However, realistically 

there are high chances of the results being skewed. In those 

cases, low precision causes more harm than low recall. In our 

study, we found participants getting frustrated with false 

positives, making it hard to rely on the system. Participants 

did understand that a system cannot be perfect, and they 

valued access to rich contextual information. However, the 

system cannot “provide the user too much of wrong 

information, because that will directly confuse the user more 

than really help them out.” (P9). DNNs have been found to 

get easily “fooled” even with a high confidence threshold 

[44]. For a deployable level of accuracy, using computer 

vision techniques alone may be insufficient. Potential 

solutions relying on humans to use their own judgment to 

reason about the inference (e.g., using explainable AI 

techniques  [26]) or using heuristics and sensor fusion 

techniques to supplement the vision results could help 

establish more confidence in AI-based navigation aids. 

Limitations and Future Work 

Two main limitations may impact our findings. First, due to 

Landmark AI’s high rate of false positives, participants were 

often frustrated and confused. While we believe that 

accuracy should have been better, this allowed us to 

understand the implications of poor accuracy, a likely 

scenario in the open world in the near-term with state-of-the-

art AI. Studying how people learn to adapt to system 

inaccuracies will be valuable for understanding usage of 

fault-prone AI systems [1]. Second, Landmark AI did not 

provide navigational guidance to reach the landmark target 

once it was identified, an important characteristic for a 

wayfinding system [42,60]. However, this gave us an 

opportunity to investigate the guidance needs in the last few 

meters. Indeed, we observed that the system does not have to 

be hyper-accurate with such guidance, as one’s existing 

mobility skills (through O&M training or otherwise) plays an 

important role of being independent. As participant P10 

summarizes, “At some point, you got to leave something out 

to the user to use their brain. Some people want to be spoon-

fed every single little bit of information, but how do you learn 

if you don't find the stuff out for yourself?”. 

CONCLUSION 

In this paper, we investigated the last-few-meters wayfinding 

problem. Our formative study identified common challenges 

faced in the last few meters, how VI users currently overcome 

them, and where current technology falls short. Based on these 

findings, we designed Landmark AI and elicited feedback on 

the usefulness of the system design via a design probe study. 

Using qualitative data analysis, we found that an individual’s 

choice of mobility aid (e.g., guide dogs or white canes) and 

their visual ability impacted the manner in which they used the 

system and the provided feedback. We captured this rich 

relationship between the information types and an individual’s 

mobility needs in a design space for creating adaptive systems 

and presented a set of design implications for future camera-

based AI systems for people with VI. 
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